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Abstract
Time-dependent Ginzburg–Landau (TDGL) formulation has been developed for the ordering
processes of B2 and D03 types in binary alloy systems. In the formulation, three order
parameters are defined in order to describe the state of order. Equivalent variants of B2 and D03

structures are distinguished using these order parameters. The mean-field free energy is defined
in the form of a Landau-type expansion using the order parameters and a composition
parameter. Interface energies due to local variations in the degrees of order and concentration
are given with a gradient square approximation. Kinetic equations are derived from the
Ginzburg–Landau-type potential in order to describe the time-evolutions of the order
parameters and the concentration. Numerical simulations of the kinetic equations have been
performed for B2- and D03-type ordering as well as concurrent ordering and phase separation to
disordered A2 + D03. The simulated results provide a good reproduction of the formation
processes of B2 and D03 ordered domains in an Fe3Al alloy.

1. Introduction

The substitutional solid solutions of an iron-rich Fe–Al binary
alloy system form ordered structures B2 and D03 that are based
on the fundamental bcc crystal lattice. Figure 1 shows a part of
the equilibrium phase diagram of Fe–Al with around 25 at.%
Al [1]. The composition-temperature ranges in which the
ordering of B2 and D03 occurs can be confirmed from figure 1.
Here, A2 is the disordered phase of a bcc solid solution. The
regions of A2, B2, and D03 phases are divided with single
lines in the Al-rich side of figure 1. This indicates that the
phase transitions between A2 and B2 as well as between B2
and D03 occur on the lines in a manner classified as the second
order. The transition line A2–B2 ends in a tricritical point at
approximately 23 at.% Al and 890 K. A miscibility gap extends
between the A2 and B2 phases below this point. As the B2–
D03 transition line impinges on the miscibility gap, a two-
phase mixture of A2 and D03 appears in the lower temperature
portion of the miscibility gap. The crystal structures of A2, B2,

and D03 are illustrated in figure 2. In the A2 phase, atoms of
the elements of A and B randomly occupy the bcc lattice sites.
The B2 structure is formed by the ordering reaction of A and
B atoms between the first nearest neighbors. It comprises two
simple-cubic-type sublattices with different compositions. In
the B2 phase, two types of variants exist depending on which
of the two sublattices are preferably occupied by the A and
B atoms. Antiphase boundaries (APBs) with displacement
a/4〈111〉 are formed where the two variants come into contact.
Here, a is the lattice constant of the unit cells shown in figure 2.
If additional ordering occurs between the second nearest-
neighbor atoms, the ordered state changes from B2 to D03. The
stoichiometry of D03 is A3B in contrast to AB for B2. In the
perfect D03-type order at A3B, B atoms form an fcc sublattice,
as denoted by the unfilled circles in figure 2(c). Therefore,
the four types of variants are defined in D03 depending on
the position of the fcc sublattice enriched with B atoms. The
D03 ordered phase is partitioned into antiphase domains by
APBs with a displacement of a/4〈111〉 or a/2〈100〉. In the last
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Figure 1. The relevant portion of the equilibrium phase diagram of
Fe–Al [1]. Filled circles and open triangles denote heat-treatment
temperatures of Fe–24.6 at.% Al alloy in the experiment.

few decades, the formation of antiphase domain structures and
their time-evolution have been attracting considerable interest
from both the fundamental and applied or practical viewpoints
of ordering alloys. Extensive observations by transmission
electron microscopy (TEM) have revealed the occurrence of
microstructural changes due to ordering as well as ordering
with phase separation in Fe–Al alloys [2–11]. The specific
features of microstructural evolution are inherently related to
the crystal symmetry changes due to the relevant ordering
reaction. Therefore, the kinetic modeling and analysis of the
processes should consider the symmetrical aspects of ordered
structures. A microscopic formulation based on a discrete
lattice can easily include the crystal symmetrical changes due
to ordering [12–24]. However, it is sometimes difficult to
analyze domain growth behavior over a wide range of length
scale because it is at a microscopic scale. In contrast, a
mesoscopic time-dependent Ginzburg–Landau (TDGL) model
on a continuous medium [25–28] is useful for studying the
latter [5, 7, 9, 28–33]. Eguchi et al [29], Shiiyama et al
[31, 32], and Matsumura et al [33] have successfully simulated
processes involved in B2 ordering and the evolution of the
two variant phases with TDGL equations for concentration
variation and degree of order. However, no mesoscopic model
has been presented for the case with more than two variants in
D03-type ordering.

In this study, we define a free energy function by using
a Landau expansion for the B2 and D03 ordered phases,
considering their symmetry relationships on a continuous
medium. Therefore four types of variants of D03 ordered
phase are taken into account in our formulation. The
kinetic equations for the ordering processes are derived in
TDGL forms with the obtained free energy function and
are then applied to simulate the time-evolution of B2-
and/or D03-type ordering: B2 → D03, A2 → D03,

Figure 2. Crystal structures of A2 (a), B2 (b), and D03 (c) and
displacement vectors of APBs.

Figure 3. Definition of the four fcc sublattices α, β, γ , and δ.

B2 → A2 + D03, and A2 → A2 + D03. The two-
dimensional microscopic models given by Vaks et al well
reproduced formations of domain structures in various types
of ordering of B2 and/or D03 [23, 24]. Our present model
explains more clearly the domain structures in an Fe–Al alloy
by comparing microstructural changes obtained from three-
dimensional simulations with the experimental results of TEM
observations. Allen et al gave mesoscopic models for ordering
processes, and discussed details of interface motion and
domain growth with extensive TEM observations [3–10]. We
evaluate interfacial tensions of boundaries simply on the basis
of studies of Cahn et al [34] and Allen et al [5], and consider
boundary structures from the results of the simulations.

2. Atomic occupation probabilities and
representation of variants

We now consider a binary alloy system A3−εB1+ε, which
undergoes B2 and D03 ordering reactions depending on the
temperature and composition. Here, ε denotes the composition
deviation from the stoichiometry A3B. To treat the structures
of A2, B2, and D03 in the same framework, the fundamental
bcc lattice is divided into four fcc sublattices labeled as α, β ,
γ , and δ which are illustrated in figure 3. The site occupation
probabilities of the constituent elements are given as a function
of three order parameters ξ , η, and ζ and the composition
deviation ε, as listed in table 1. If Pi is defined as the
probability of finding B atoms on sublattice i (i = α, β, γ ,
or δ), the disordered A2 state is given by Pα = Pβ = Pγ =
Pδ = (1 + ε)/4 and ξ = η = ζ = 0, while B2 is characterized
by Pα = Pβ �= Pγ = Pδ , or η �= 0 and ξ = ζ = 0. The
two types of variants of B2 are distinguished by the sign of
η. As additional ordering on B-rich sublattices results from
B2 in D03, the latter state of order is described by ξ �= 0
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Table 1. Atomic occupation probabilities close to stoichiometric
composition A3−εB1+ε for the lattice sites defined in figure 3.

Site A-atom B-atom

α 1
4 (3 − ε + η + 2ξ) 1

4 (1 + ε − η − 2ξ)

β 1
4 (3 − ε + η − 2ξ) 1

4 (1 + ε − η + 2ξ)

γ 1
4 (3 − ε − η + 2ζ ) 1

4 (1 + ε + η − 2ζ )

δ 1
4 (3 − ε − η − 2ζ ) 1

4 (1 + ε + η + 2ζ )

Figure 4. Order parameters satisfying the selection rule within four
types of D03 domains. Thick and thin curves indicate B2- and
D03-type boundaries, respectively.

and ζ = 0 for η < 0 or ξ = 0 and ζ �= 0 for η > 0. It
follows that ordered domains with negative or positive η are
further partitioned into subdomains distinguished by the sign
of ξ or ζ in the D03 phase. The APBs in the D03 order phase
are classified into two types depending on the order parameters
involved: APBs due to a change in the sign of η along with the
replacement of ξ and ζ and APBs at which the sign of ξ or ζ

changes, as illustrated in figure 4. The former and latter APBs
are hereafter called B2 and D03 types, respectively.

The crystal structure factors F(hkl) for diffraction
experiments are given as a function of the order parameters
as follows: when h, k, and l are all even or all odd integers,

F(hkl) =

⎧
⎪⎨

⎪⎩

4{(3 − ε) fA + (1 + ε) fB}, if h + k + l = 4n

4( fA − fB)(ξ ± iζ ), if h + k + l = 4n ± 1

4( fA − fB)η, if h + k + l = 4n + 2

(1)

otherwise F(hkl) = 0. Here, f j is the atomic scattering factor
of j -atoms ( j = A or B) and n is an integer. According
to the selection rule for ξ and ζ depending on the sign
of η mentioned above, the second types of reflections in
equation (1) practically include either ξ or ζ as the variable
in the structure factors. Therefore, the three order parameters
ξ , η, and ζ are measurable by diffraction experiments and
uniquely define an ordered state.

3. Free energy formulation for B2 and D03 order and
kinetic equations for ordering processes

The free energy of a system which undergoes B2 and D03

ordering is derived in the form of a Landau expansion with
the order parameters ξ , η, ζ , and ε. The simplest form of the

Figure 5. Contour maps of the free energy function f when states
A2 (a), B2 (b), and D03 (c) are stabilized. Left and right figures are
cross sections of f in ξ–η and ζ–η planes, respectively. The gray
level darkens with a decrease in the value of f . Double circles
indicate the minimum points at (ξ, η, ζ ) = (0, 0, 0) for A2 state (a),
(0,±Y, 0) for B2 (b), and (0, Y,±X) and (±X,−Y, 0) for D03 (c).

free energy f is given as

f (ξ, η, ζ, ε, T ) = A0(T ){a(T ) + 1
2 b(T )(ε − ε0(T ))2

− 1
2 (X (ε, T )2 − Y (ε, T )2)(ξ 2 + ζ 2)

− 1
2 Y (ε, T )2η2 + Y (ε, T )(ξ 2 − ζ 2)η

+ 1
4 (ξ 2 + η2 + ζ 2)2}, (2)

where A0, a, b, and ε0 are positive coefficients depending
on temperature T . The parameters X (ε, T ) and Y (ε, T )

determine the stable phase state in such a manner that D03

appears when X �= 0 and Y �= 0, while B2 becomes stable
when X = 0 but Y �= 0. No ordering occurs if both X and
Y vanish. The phase stability thus mentioned is confirmed in
figure 5, where contour maps of the function f are given in
the three-dimensional Euclidean space of the order parameters
(ξ , η, ζ ). The function f takes a minimum value at the origin
(ξ, η, ζ ) = (0, 0, 0) for X = Y = 0, as shown in figure 5(a),
stabilizing the disordered state A2. If X = 0 but Y �= 0,
two minima appear symmetrically at η ± Y (ε, T ) on the axis
ξ = ζ = 0 in figure 5(b), leading to two variants of the B2
phase. When X �= 0 and Y �= 0, two minima are located at
points where ζ = ±X (ε, T ) and η = Y (ε, T ) in the plane of
ξ = 0, while another two minima appear at (ξ, η) = (X,−Y )
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and (ξ, η) = (−X,−Y ) in the plane of ζ = 0 (see figure 5(c)).
These four minima correspond to four equivalent variants of
the D03 phase. Therefore, equation (2) satisfies the selection
rule for the parameters ξ and ζ depending on the sign of η for
D03, and qualitatively expresses the free energy of the relevant
phase states A2, B2, and D03. It should be noted that the
parameters X and Y give the equilibrium values of the order
parameters ξ , η, and ζ . If the functions X and Y are described
in such simple forms as

X (ε, T ) = X0(T )

√

1 −
(

ε

cX (T )

)2

, (3)

Y (ε, T ) = Y0(T )

√

1 −
(

ε − εB2

cY (T )

)2

, (4)

the ordering reactions of the D03 and B2 types occur at a given
temperature T in the composition ranges −cX (T ) < ε <

cX (T ) and εB2−cY (T ) < ε < εB2+cY (T ), respectively. Here,
X0(T ) and Y0(T ) give the equilibrium degrees of order at the
stoichiometric compositions for D03(ε = 0) and B2(ε = εB2),
respectively, A model for the equilibrium phase diagram can
be easily constructed if functions X0(T ), Y0(T ), cX (T ), and
cY (T ) are known. We set

X0(T ) =
√

1 − T

823
,

cX (T ) = 1

0.9

(

1 − T

823

)0.47

,

Y0(T ) =
√

1 − T

890
and

cY (T ) = 1

0.43

(

1 − T

890

)0.4

(5)

for Fe–Al alloy systems, and obtain the model phase diagram
shown in figure 6, which is comparable to figure 1.

The thermodynamic potential of a system with spatial
variations in the order parameters as well as in composition is
assumed in a Ginzburg–Landau form with the square gradient
approximation for interface energy densities [34]:


 =
∫

{ f (ξ, η, ζ, ε, T ) + g( �∇ξ, �∇η, �∇ζ, �∇ε, T )} dr, (6)

g( �∇ξ, �∇η, �∇ζ, �∇ε, T ) = 1
2ν(T )( �∇ξ)2

+ 1
2μ(T )( �∇η)2 + 1

2ν(T )( �∇ζ )2 + 1
2ω(T )( �∇ε)2. (7)

Here, the gradient energy coefficients ν(T ), μ(T ), and
ω(T ) take positive values depending on the temperature.
The coefficient ν(T ) for ( �∇ξ)2 is equal to that for ( �∇ζ )2

in equation (7) since ξ and ζ are defined equivalently in
table 1. The temporal changes of the local state of order
and local composition when the system deviates from thermal
equilibrium are considered to obey the following well-known
equations [26, 27],

∂ξ

∂ t
= −L1(T )

δ


δξ
,

∂η

∂ t
= −L2(T )

δ


δη
,

∂ζ

∂ t
= −L1(T )

δ


δζ
, and

∂ε

∂ t
= M(T )∇2 δ


δε
.

(8)

Figure 6. The model phase diagram of Fe–Al type. Two systems of
Fe–Al type with ε = −0.025 (1), 0 (2) were considered in the
simulations. Filled circles and open triangles indicate annealing
temperatures in the simulations. The composition ε in the miscibility
gap for the system (1) takes ε̄A2 and ε̄D03 within the phases A2 and
D03, respectively.

Here, L1(T ), L2(T ), and M(T ) are reaction constants, and the
equations for ξ and ζ take the same constant L1. Substituting
equations (6) and (7) into (8), one can derive the explicit forms
of the kinetic equations as follows,

∂ξ

∂ t
= L1 A0{(X2 − Y 2)ξ − 2Y ξη

− ξ(ξ 2 + η2 + ζ 2)} + L1ν∇2ξ, (9)
∂η

∂ t
= L2 A0{Y 2η − Y (ξ 2 − ζ 2)

− η(ξ 2 + η2 + ζ 2)} + L2μ∇2η, (10)
∂ζ

∂ t
= L1 A0{(X2 − Y 2)ζ + 2Y ζη

− ζ(ξ 2 + η2 + ζ 2)} + L1ν∇2ζ, (11)

and

∂ε

∂ t
= M A0∇2

[

bε + (ξ 2 + ζ 2)X
∂ X

∂ε

+ {(ξ 2 − ζ 2)η − (ξ 2 + η2 + ζ 2)Y }∂Y

∂ε

]

− Mω∇4ε. (12)

The coupled kinetic equations of the TDGL types thus derived
are expected to describe the time-evolution of B2 and/or D03

ordering processes with composition variation.

4. Simulation and experiment

The simulations of the ordering processes were performed on
a three-dimensional square grid of 120 × 120 × 120 mesh with
periodic boundary conditions. Here, the lattice constant of the
grid is regarded as a unit length. The TDGL equations (9)–
(12) were transformed into difference types and the temporal
changes of the order parameters at each cell in the grid were

4
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obtained by numerically solving the difference-type equations.
Here, the Laplacian of a parameter u (=ξ, η, ζ , or ε) at
(x, y, z) was evaluated by

∇2u(x, y, z) =
∑

〈δx1,δy1,δz1〉
{u(x + δx1, y + δy1, z + δz1)

− u(x, y, z)}. (13)

The sum in the right-hand side runs over the first nearest-
neighbor cells. The gradient energy coefficients ν, μ and ω

were set to be ν:μ:ω = 0.88:0.44:1 in the present simulations.
The assumed temperatures and alloy compositions are plotted
in figure 6. The simulations began from one of the
homogeneous states B2 or A2. The initial values of the
local composition ε0(x, y, z) were given with the overall
composition ε and three individual sets of small random
numbers {Rε(x, y, z)}, {Qε(x, y, z)}, and {Sε(x, y, z)} as

ε0(x, y, z) = ε + {Rε(x, y, z) − Rε(x − 1, y, z)

+ Qε(x, y, z) − Qε(x, y − 1, z) + Sε(x, y, z)

− Sε(x, y, z − 1)}, (14)

since the following conserved condition is guaranteed:
∑

x,y,z

{Rε(x, y, z) − Rε(x − 1, y, z) + Qε(x, y, z)

− Qε(x, y − 1, z) + Sε(x, y, z)

− Sε(x, y, z − 1)} = 0. (15)

For an initial B2 state with mean degree of order η̄0, the
order parameters were prepared with another three sets of
random numbers around zero {Rξ (x, y, z)}, {Rη(x, y, z)}, and
{Rζ (x, y, z)} as

ξ0(x, y, z) = Rξ (x, y, z),

η0(x, y, z) = η̄0 + Rη(x, y, z),

ζ0(x, y, z) = Rζ (x, y, z).

(16)

On the other hand, when the simulation began from the A2
state, the initial values of the order parameters were set to be

ξ0(x, y) = Rξ (x, y, z)Rη(x, y, z),

η0(x, y, z) = Rη(x, y, z),

ζ0(x, y, z) = Rζ (x, y, z)Rη(x, y, z),

(17)

to avoid non-physical situations such as ξ(x, y, z) and/or
ζ(x, y, z) �= 0 when η(x, y, z) = 0. The simulation results
were plotted in two- or three-dimensional views. In the former,
the values of the composition and the functions of the order
parameters were integrated in ten layers of grids along the z
direction.

In the experiment, ingots of an Fe–24.6 at.% Al alloy
were prepared by the vacuum induction melting of the pure
materials. The disk specimens of 3 mm diameter were
homogenized for 21.6 ks at 1073 K where the A2 phase is
stable. Some of the specimens were annealed at 923 K for 10 ks
so that they would be ordered in a B2 state. The homogenized
specimens in the A2 or B2 states were aged for a given
duration at 743, 773, or 803 K. The temperatures at which the
specimens were heat-treated are indicated in figure 1. Electron

Figure 7. Example of simulated ordering processes from B2 to D03

at ε = 0. Top (a), middle (b), and bottom rows (c) include
two-dimensional maps of positive η, ζ 2, and ξ 2, respectively. The
gray level varies from dark to bright with an increase in their values.
Maps (b-2)–(b-4) correspond to 111 dark field images since ξ 2 ∼ 0
after 12 k steps. Three-dimensional maps for the region surrounded
by a rectangle in (b-4) are presented in figure 8.

microscope observation was carried out using a JEM-200CX
TEM at an accelerating voltage of 200 kV. The microstructures
of the specimens were observed in dark field images with a 111
or 222 superlattice reflection, where the former is of the D03

type and the latter of the B2 type, as described in section 2.

5. Results

5.1. B2 → D03 transition

Figure 7 shows a simulated ordering process from B2 to D03

at the stoichiometric composition of ε = 0. In the initial
state, the mean values of η, ξ , and ζ are η = η̄0, ξ = 0, and
ζ = 0, respectively, as shown in (a-1), (b-1), and (c-1). The
map of η turns light gray uniformly in (a-2) after 12 k steps,
indicating that the positive value of η entirely increases and
becomes uniform. The spatial variation in ζ is recognized in
(b-2); however, the map of ξ is still completely dark over the
entire area in (c-2). The D03-type ordering develops in this
stage according to the selection rule for the order parameters ξ

and ζ depending on the sign of η (see figure 4). Subsequently,
the D03 domains grow with time as shown in the maps of ζ 2,
while no distinct change occurs in the maps of η and ξ 2. The
region surrounded by a rectangle in (b-4) has been plotted in a
three-dimensional data representation in figure 8. The values
of ζ 2 were mapped as ‘iso-order’ surfaces, which correspond to
D03-type APBs. Curved and intricate APBs can be recognized.
The resultant morphology of the D03 domains in (b-4) is quite
similar to that observed in a TEM image of the Fe–24.6 at.%
Al alloy shown in figure 9.

5.2. A2 → D03 transition

Figure 10 shows a simulated process of D03 ordering from a
disordered A2 phase. A domain structure has been formed in

5
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Figure 8. Three-dimensional maps of ζ 2 as iso-order surfaces for the
region surrounded by a rectangle in figure 7(b-4). The surfaces are
plotted in ten layers of grids along the z direction and correspond to
D03-type APBs.

Figure 9. 111 dark field image of Fe–24.6 at.% Al alloy annealed at
743 K for 10 ks.

Figure 10. Time-evolution of the ordering process from A2 to D03 at
ε = 0. Two-dimensional maps of η, η2, ζ 2, and ξ 2 are placed from
top to bottom. The gray level varies from dark to bright with an
increase in their values. The selection rule of the order parameters
can be confirmed by comparing these maps (see figure 4).

the map of η at 4 k steps in (a-2); however, the maps of ξ and ζ

are still completely dark. It is indicated that B2-type ordering
first occurs in the early stage of ordering. The B2 domains
grow with time between 4 and 28 k steps as shown in (a-2)

Figure 11. Two-dimensional map of ξ 2 + ζ 2 in the D03 state after
35 k steps (a), and 111 (b) and 222 (c) dark field images of
Fe–24.6 at.% Al alloy which was held at 743 K and then annealed at
773 K for 10 ks. Map (a) corresponds to 111 dark field images.
D03-type boundaries can be distinguished from B2-type ones in
image (b) with the help of (c). Note: B2- and D03-type APBs
indicated by arrows meet at triple junctions in the encircled regions.

Figure 12. Parameters of order and composition within four types of
D03 domains (gray portions) and an A2 phase region (a dotted
portion) in the equilibrium state. Thick and thin curves indicate B2
and D03 type boundaries, respectively, while a dashed curve denotes
an inter-phase boundary. The compositions ε̄A2 and ε̄D03 are
indicated in figure 6.

and (a-3). Subsequently, D03 ordered regions with non-zero ξ

are formed within the B2 domains with negative η, while the
regions with non-zero ζ appear in the B2 domains with positive
η. Comparing figures 10(a-4) and 11(a), one may notice that
D03-type APBs impinge the B2-type ones and triple junctions
of APBs are formed at these locations. The triple junctions
are observed in actual D03 domain structures formed from the
initial A2 state, as shown in figures 11(b) and (c).

When the interface tensions acting on the APBs are
balanced at the triple junctions, the APBs meet at an angle θt

given by
σD03 = −2σB2 cos θt , (18)

where σD03 is the interfacial tension of D03-type APBs and σB2

is that of B2-type APBs. If the order parameters have achieved
their equilibrium values (i.e. η = ±Y and ξ or ζ = ±X ) in
the domain interior, σD03 and σB2 can be evaluated as σD03 ≈
1
Δν(2X)2 and σB2 ≈ 1

Δ {2νX2 + μ(2Y )2}, respectively (see
equation (7), figure 12, and references [5, 34]). Here Δ is the
interfacial thickness. The angle θt is found to be ∼110◦ by
using equation (18) for the simulation condition for X ≈ 0.099
and Y ≈ 0.16. This value is approximately equal to that
of θt measured in the encircled region of figure 11(a). This
suggests that the evaluated interfacial tensions quantitatively
account for the morphology of APBs in our simulation. Since

6
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Figure 13. Concurrent ordering and phase separation from B2 to A2 + D03 at ε = −0.025. Spatial variations of ζ 2, η2, and ε are
two-dimensionally illustrated in the top (a), middle (b), and bottom (c) rows, respectively. Since η is initially set to be positive, ξ ∼ 0 is
considered to be held in domains according to the selection rule (see figure 4); therefore, maps of ζ 2 (a-2)–(a-6) correspond to 111 dark field
images. Maps of η2 (b) correspond to 222 dark field images. Double arrows indicate A2 precipitates formed on APBs, while single arrows
show the formation of an A2 droplet due to the shrinking of an ordered domain.

θt ∼ 100◦ is obtained within the encircled region in the
TEM image of figure 11(b), our simulation provides a good
reproduction of the domain structures in real Fe–Al alloy
systems.

5.3. B2 → A2 + D03 transition

Figure 13 shows a process of concurrent ordering and phase
separation from B2 to A2 + D03. The first reaction begins
with the homogeneous ordering of the B2 type and D03 domain
formation, as observed in (a-2) and (b-2). No concentration
variation appears at this stage. Subsequently, the D03 domains
grow with the evolution of D03 ordering, as shown in (a-3)
and (a-4). Simultaneously, spatial variations of η and ε also
develop along with the D03 ordering. Gray lines gradually
appear along the APBs between the D03 domains in the
corresponding maps of (b-3), (b-4), (c-3), and (c-4). They
indicate that the values of η and ε decrease along the APBs
rather than within the domains. In the following stage, dark
regions enriched with A atoms are found at highly curved
portions of the APBs, as indicated by double arrows in (c-5).
Based on figure 14(b), these dark regions are regarded to be
of the A2 phase. Red iso-surfaces of ε are recognized at
the corresponding regions denoted by double arrows and the
values of ε are lower there than the critical composition of B2
ordering, εB2 − cY . The tension of the interface boundaries
between the A2 and D03 phases σIPB is balanced by σD03 at
the intersection containing the two interface boundaries and the
D03-type APB;

σD03 = 2σIPB cos
θw

2
, (19)

where θw is the angle at which the interface boundaries
intersect. If the order parameters and concentration take the
equilibrium values in the domains and the A2 phase regions,
σIPB can be represented by σIPB ≈ 1

�
{νX2 + μY 2 + ω(ε̄D03 −

ε̄A2)
2} for the interfacial thickness � according to equation (7)

and figure 12 [5, 34]. Here ε̄A2 and ε̄D03 are the compositions

of phases A2 and D03, respectively (see figure 6). The angle
θw is obtained by using the evaluated values of σIPB and σD03

in equation (19). The approximated value (θw ∼ 80◦) is
reasonable for partial wetting. The A2 phase regions enlarge
with time after 90 k steps and assume droplet-like shapes in
figures 13(c-6) and 14(c) at 240 k steps. Some of the A2 phase
droplets are in contact with the APBs of the D03 domains,
while the others are isolated from the APBs. Generally, the
droplets in contact with the APBs are irregular in shape, while
the isolated droplets are round or oval. The formation of
isolated A2 phase droplets can be observed in the figures at
time steps from 30 to 240 k (figures 13(c-4)–(c-6) and 14).
The domain pointed to by a single arrow is enclosed by an
APB at 30 k steps, and the A2 phase is precipitated partially
on the APB at 90 k steps. The domain then shrinks with time,
resulting in A2 phase droplets after 240 k steps. Therefore,
the A2 phase droplets are formed in the D03 domain interior
in a continuous manner, which is different from the classical
nucleation and growth process.

Figure 15 shows a series of TEM images showing the
microstructure change during the B2 → A2 + D03 transition
in Fe–24.6 at.% Al. D03-ordered domains are visible in the
111 dark field image at 0.3 ks in (a-1), while a fairly diffuse
contrast appears in the corresponding 222 image in (b-1).
D03-type ordering prevails throughout the specimen around
this stage. From the 111 images in (a-1)–(a-4), we observe
that the D03 domains grow with annealing time. The APB
structure is also recognized with faint contrast in the 222
image of (b-2) at 1 ks. It suggests that the degree of B2
order takes a lower value along the APBs than that in the
domain interior by the slight enrichment of Fe atoms along
the APBs. The contrast of the APBs in the 222 images is
enhanced after prolonged annealing for 10 ks since Fe atoms
are more condensed on the APBs. It is observed in (b-4)
at 100 ks that some portions of the APBs exhibit a darker
contrast than other parts of the APBs. Therefore, partial
wetting of the A2 phase appears to occur on the APBs due

7
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Figure 14. Three-dimensional iso-surfaces of ζ 2 (gray level) are
overlapped with those of ε (red) with ten layers of grids along the z
direction. The former surfaces are equivalent to D03-type APBs and
correspond to figures 13((a-4)–(a-6)), while the latter ones are related
to figures 13((c-4)–(c-6)). Double arrows indicate A2 precipitates
formed on highly curved portions of the APBs, while single arrows
show the formation of an A2 droplet due to the shrinking of an
ordered domain.

Figure 15. Microstructure change during B2 to A2 + D03 transition
in Fe–24.6 at.% Al at 773 K. 111 dark field images (a) and 222 ones
(b). (a-4) and (b-4) correspond to the same image field. Note: A2
phase droplets in the domain interior are indicated by arrows.

to the enrichment of Fe atoms. A2 phase droplets are found
within the domains, as indicated by the arrows in (a-4) and
(b-4). Since the microstructure change observed in the TEM
images is well reproduced in our simulation, we can conclude
that the droplets are formed in such a continuous manner by
the shrinking of D03-type APBs wetted partially by the A2
phase.

5.4. A2 → A2 + D03 transition

Figure 16 presents a process of the A2 → A2 + D03 transition
with phase separation. The map of η in (b-2) is mostly gray;
however, that of ξ + ζ in (a-2) is completely dark. No
significant modulation is recognized in the field of ε in (c-2).
Therefore, the B2 ordering first develops in the entire area,
independent of the concentration variations in the early stage
up to 4 k steps. D03-type ordering occurs within growing B2
domains after 27 k steps. On the other hand, the maps of
ε in (c-3) and (c-4) also exhibit the contours of B2 domain
structures, revealing that ε takes a lower value along the B2-
type APBs than in the domain interior. It is observed in
(c-4) that there are some droplets with a darker contrast in
parts of the B2-type APBs. These are considered to be A2
phase droplets. The contrast along the B2-type APBs in the
field of ε becomes increasingly darker with an increase in

Figure 16. Time-evolution of the two-phase mixture of A2 + D03

from A2 at ε = −0.025. The left, center, and right columns comprise
two-dimensional maps of ξ + ζ (a), η (b), and ε (c), respectively. We
use different colors to distinguish four types of D03 domains in maps
(a) and to indicate the sign of η in the domains in maps (b).
Therefore, the wetting of the A2 phase on APBs can be easily
observed. Note: the formation of A2 phase droplets is indicated by
arrows.

the time step from 6 to 50 k steps. Layers of the A2 phase
cover most of the B2-type APBs in (c-6). This suggests
that the A2 phase perfectly wets the B2-type APBs. The
perfect wetting is confirmed by the inequality 2σIPB < σB2,
which is derived on the condition that the order parameters
and concentration have attained equilibrium values within the
domains. In the maps at 31 and 50 k steps, we observe that
isolated A2 droplets are formed in the domain interior due
to the shrinking of closed B2 domains, as indicated by the
arrows. This droplet formation process is almost the same
as that observed in the previous case from B2. However, the
resultant morphology in the present case is quite different from
that in the previous one, since a considerable amount of the
A2 phase is formed in interconnected layers wetting B2-type
APBs.

8
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Figure 17. Microstructure change during the A2 → A2 + D03

transition in Fe–24.6 at.% Al at 803 K. 111 dark field images (a) and
222 ones (b). (a-4) and (b-4) correspond to the same image field.
Note: A2 phase droplets are attached to D03-type APBs in the
encircled regions.

Figure 17 shows the microstructure change in Fe–
24.6 at.% Al observed in TEM images. D03 domains are
recognized in the 111 image at 0.6 ks. The D03 domains
coarsen as the annealing proceeds, as evident in (a-1)–(a-3).
The layers with dark contrast corresponding to the B2-type
APBs become thicker from (b-1) to (b-2). This suggests that
the A2 phase is precipitated in the form of layers along the
APBs. On the other hand, A2 phase droplets are found on
D03-type APBs, as observed in (a-3) and (b-3). The domain
structure is similar in appearance to that shown in (a-6) and
(b-6) in figure 16. Therefore, the time-evolution of the A2 and
D03 two-phase structures in an Fe–Al alloy is simulated quite
well by the present kinetic model.

6. Summary

We present the TDGL formulation for the ordering processes
of B2 and D03 considering the crystal symmetries of their
structures. The formation of domain structures in an Fe–
Al alloy system is reproduced in numerical simulations for
several transition cases. For example, D03-type domains are
subsequently formed within B2-type domains in the transitions
A2 → D03 and A2 → A2 + D03. On the basis of the
simulation results and TEM observations, we can confirm that
A2 phase droplets within domains are formed in a continuous
manner and B2 domains that are surrounded by the A2
phase layers in the A2 → A2 + D03 transition undergo
shrinking, while the droplets result from the shrinking of
D03 domains with APBs partially wetted by the A2 phase in
B2 → A2 + D03.
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